Dynamics of benzimidazole ethylphosphonate: a solid-state NMR study of anhydrous composite proton-conducting electrolytes.

نویسندگان

  • Z Blossom Yan
  • Nicole E De Almeida
  • Jason W Traer
  • Gillian R Goward
چکیده

Imidazole phosphate and phosphonate solid acids model the hydrogen-bonding networks and dynamics of the anhydrous electrolyte candidate for proton exchange membrane fuel cells. Solid-state NMR reveals that phosphate and phosphonate anion dynamics dominate the rate of long-range proton transport, and that the presence of a membrane host facilitates proton mobility, as evidenced by a decreased correlation time of the composites (80 ± 15 ms) relative to the pristine salt (101 ± 5 ms). Benzimidazole ethylphosphonate (Bi-ePA) is chosen as a model salt to investigate the membrane system. The hydrogen-bonding structure of Bi-ePA is established using X-ray diffraction coupled with solid-state (1)H-(1)H DQC NMR. The anion dynamics has been determined using solid-state (31)P CODEX NMR. By comparing the dynamics of ethylphosphonate groups in pristine salt and membrane-salt composites, it is clear that the rotation process involves three-site exchange. Through data interpretation, a stretched exponential function is introduced with the stretching exponent, β, ranging 0 < β ≤ 1. The (31)P CODEX data for pristine salt are fitted with single exponential decay where β = 1; however, the data for the membrane-salt composites are fitted with stretched exponential functions, where β has a constant value of 0.5. This β value suggests a non-Gaussian distribution of the dynamic systems in the composite sample, which is introduced by the membrane host.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Solid-state NMR studies of hydrogen bonding networks and proton transport pathways based on anion and cation dynamics.

Proton dynamics in polymer electrolyte membranes are multifaceted processes, and the relative contributions of various mechanisms can be difficult to distinguish. Judicious choices of model systems can aid in understanding the critical steps. In this study, we characterize anion dynamics in a series of benzimidazole-alkyl phosphonate salts, and compare those dynamics to a membrane prototype, bu...

متن کامل

1H solid-state NMR investigation of structure and dynamics of anhydrous proton conducting triazole-functionalized siloxane polymers.

(1)H MAS solid-state NMR methods are applied to elucidate the conduction mechanism of an anhydrous proton conducting triazole-functionalized polysiloxane. At temperatures below T = 260 K, hydrogen bonding between neighboring heterocycles is observed and a dimer formation can be excluded. From the temperature dependence of (1)H MAS NMR spectra, different dynamic processes of the triazole ring co...

متن کامل

A solid-state NMR study of hydrogen-bonding networks and ion dynamics in benzimidazole salts.

On the basis of our solid-state NMR characterization of dynamics in two model salts, we draw the analogy to the fuel cell membrane candidate, phosphoric acid-doped poly(benzimidazole), and conclude that phosphate anion dynamics contribute to long-range proton transport, whereas the mobility of the polymer itself is not a contributing factor. This is contrasted with emerging membrane candidates,...

متن کامل

Composite Electrolytes and electrodes for Intermediate Temperature Hybrid Fuel Cells

Moving away from conventional solid oxide electrolytes, hybrid fuel cells based on composite electrolytes (a solid oxide electrolyte and a molten alkaline carbonate phase) exhibit promising performance due to the high electrolyte conductivity within the so-called intermediate temperature ranges (400-600 C). These electrolytes are a blend of those traditionally used in Solid Oxide and Molten Car...

متن کامل

An experimental and theoretical NMR study of NH-benzimidazoles in solution and in the solid state: proton transfer and tautomerism

This paper reports the (1)H, (13)C and (15)N NMR experimental study of five benzimidazoles in solution and in the solid state ((13)C and (15)N CPMAS NMR) as well as the theoretically calculated (GIAO/DFT) chemical shifts. We have assigned unambiguously the "tautomeric positions" (C3a/C7a, C4/C7 and C5/C6) of NH-benzimidazoles that, in some solvents and in the solid state, appear different (bloc...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Physical chemistry chemical physics : PCCP

دوره 15 41  شماره 

صفحات  -

تاریخ انتشار 2013